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1. Introduction

Recently [1 – 5], a proposal has appeared for the computation of the 2-point function of

quantum gravity within the spinfoam formalism [6], a candidate covariant approach to a

non–perturbative quantisation of General Relativity (GR). This proposal offers a possibility

to study the semiclassical limit of spinfoams and define the perturbative expansion in the

Planck length `P, arguably the major open question within this approach. This is very

interesting, for two different reasons: on the one hand, to check the correctness of the low–

energy limit of spinfoams; on the other hand, to address the possibility of curing the non–

renormalisability of the conventional perturbative expansion via background–independent

methods.

In [1] (see also [5]), the proposal was applied to the Barrett–Crane (BC) spinfoam model

for four dimensional (4d) Riemannian GR, and it was shown that the 2-point function, or

graviton propagator, indeed had the correct 1/|x − y|2 leading order behavior in the large

scale limit. However, there are some assumptions behind this result that deserve a more

careful treatment. In particular, the BC model is plagued by degenerate configurations.

This has so far cast some doubts on the viability of the proposal, especially because there

is still no support from the numerical analysis, due to the high complexity of the vertex

amplitude.

In this work, we prove that the degenerate configurations do not affect the leading

order. In doing so, we modify the ansatz for the boundary state, following the 3d investi-

gation appeared in [4]. For the 4-simplex spinfoam contribution, the new boundary state
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allows us to write the 2-point function as an integral over SU(2). This is our first result.

In the large j limit, we evaluate this integral in a saddle point approximation, proving the

1/|x − y|2 behavior of the leading order. The degenerate configurations can be correctly

neglected because they correspond to saddle points which are not absolute minima. This

is our second result. Thanks to the integral expression, which involves no sums, the nu-

merical analysis is strongly simplified. Indeed, the leading order result is fully supported

by numerical analysis [14].

Concerning the full perturbative expansion in `P, this can be computed from higher or-

ders of the saddle point approximation as well as from the contribution of other spinfoams.

We do not attempt here their evaluation, which is rather complicate. Notice however that

higher orders have been studied in a 3d toy model [3, 4]; remarkably, interesting modifi-

cations to the conventional expansion arise, due to the microscopical quantum geometry

described by spinfoams. This makes the whole approach very interesting, and pushes to-

wards the calculation of these corrections in the 4d case. We expect that having recast the

`P expansion into the saddle point expansion will help future work.

This paper is organised as follows. In the next section, we briefly recall properties of

the BC vertex amplitude which we need in the rest of the paper. In section 3, we review

the construction of the 2-point function and the results of [1]. In section 4, we introduce

the new boundary state and discuss its properties. In section 5, we show how the new

boundary state allows to write the 2-point function as an integral over SU(2). In section 6,

we study the saddle point approximation to this integral, and show that the leading order

behaves as expected from low–energy physics. In the final section, we discuss possible

further developments.

Throughout the paper, we use units `P = 1.

2. Spinfoam amplitudes: evaluation of Relativistic Spin Networks

In this section we recall basic facts about the spinfoam amplitudes, the quantities encoding

the dynamics of quantum gravity. This gives us the opportunity to fix our notation and

to pinpoint features which will be crucial in the following. We consider here the spinfoam

amplitude for the BC model of 4d Riemannian quantum gravity; this is given by the

evaluation of a relativistic spin network [7] with group Spin(4), namely the double cover of

SO(4). The relativistic spin network is defined by a graph Γ together with the assignment

of a Spin(4) group element Gn to each node n of Γ and a simple irreducible representation

(irrep) Jl to each link l of Γ. Using the homomorphism Spin(4) = SU(2)L × SU(2)R, the

irreps of Spin(4) are labelled by two half–integers, say (j, k), corresponding to the irreps of

the two SU(2) sectors; then the simple representations are such that they induce the same

SU(2) representation in the left and right sectors, namely Jl = (jl, jl). Furthermore, let

us note here that the scalar Casimir of Spin(4) satisfies C2
Spin(4)(j, k) = 4 [C2(j) + C2(k)],

where C2(j) is the SU(2) Casimir.

Using the above homomorphism, each group element decomposes as the product of
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two left and right rotations G = gLgR, and the evaluation reads [8],

EΓ ≡
∫

Spin(4)

∏

n

dGn

∏

l

KJl
(G−1

s(l)Gt(l)), (2.1)

where s(l) and t(l) denote the source and target node of the link l. The kernel KJ(G) is

the matrix element of G on the SU(2)-invariant vector |J, 0〉 in the J representation. Here

SU(2) is the diagonal rotation group, corresponding to the subgroup of 3d rotations. We

conveniently parametrise SU(2) group elements as

g(φ, n̂) = cos φ
�

+ i sinφ n̂ · ~σ, φ ∈ [0, π]. (2.2)

Consequently, the characters are given by χj(g) =
sindjφ
sinφ , and the Haar measure is dg =

1
2π2 sin2 φd2Ω(n̂) dφ.

The invariant vector is easily expressed in term of left/right components:

|J, 0〉 =
1√
dj

∑

m

(−1)j−m |j,m〉L |j,−m〉R =
1√
dj

∑

m

|j,m〉L R〈j,m|, (2.3)

where dj = 2j + 1 is the dimension of the SU(2) representation of spin j. Then it is

straightforward to realize that the SU(2) invariant kernel KJ is simply the SU(2) character:

〈J, 0|G|J, 0〉 = 〈J, 0|gLgR|J, 0〉 =
1

dj

∑

m

〈j,m|gLg−1
R |j,m〉 =

1

dj
χj(gLg−1

R ). (2.4)

Finally, using the invariance of the Haar measure dG = dgLdgR under left and right

multiplication, it is easy to prove that the relativistic spin network evaluation is actually

a 3d object regarding only integrals over SU(2):

EΓ =

∫

SU(2)

∏

n

dgn

∏

l

1

djl

χjl
(g−1

s(l)gt(l)), (2.5)

In particular, the vertex amplitude for the BC model is obtained for Γ given by a 4-simplex,

and this gives the {10j} symbol for the recoupling theory of SU(2),

{10j} =

∫

SU(2)

∏

n

dgn

∏

l

1

djl

χjl
(g−1

s(l)gt(l)). (2.6)

Let us point out that the {10j} symbol is defined up to a normalisation. This creates

an ambiguity in the definition of the BC model. The standard normalisation found in the

literature does not have the 1/dj factors in the r.h.s. of (2.6) Notice also that another natural

choice for the kernel is d2
jKJ = djχj , instead of χj/dj , as it normalises the convolution

product: ∫

Spin(4)
dG

(
d2

jKJ(HG−1)
) (

d2
jKJ(GK−1)

)
= d2

jKJ (HK−1).

These normalisation issues do not modify the computations below, namely the leading

order of the graviton correlation computed using a single 4-simplex. We nevertheless men-

tion them as they will most likely affect the higher order corrections and become essential

when considering configurations with many 4-simplices.
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Geometrical interpretation of the {10j} symbol

The {10j} symbol admits a geometrical interpretation, associated to the structure of a

4-simplex, which will be important in the following. The key fact is that it can be written

as an integral over ten SU(2) angles φl ∈ [0, π],

{10j} =

∫
dµ[φl]

∏

l

1

djl

χjl
(φl), (2.7)

where the measure takes into account that the angles come from the vertex group elements

gv through the relation, cos φl = 1
2 tr(g−1

s(l)gt(l)). Let us introduce the notation (IJ) for l

linking the nodes I and J , such that φIJ ≡ φl, with the convention φII = 0. The above

relation imposes a constraint that can be written as the vanishing of the determinant of

the 5×5 Gram matrix GIJ = cos φIJ , as shown in [12]:

dµ[φl] =
∏

l

dφl sin φl δ
(

det GIJ

)
. (2.8)

This constraint has a clear geometrical interpretation: it says that the angles φl are the

dihedral angles of a certain 4-simplex. Indeed, notice that the spin network induces a dual

triangulation which is also a 4-simplex, with tetrahedra dual to the nodes and triangles

dual to the links (see figure 1). Then the constraint can be translated into the Schläfli

identity
∑

l Al(φ) dφl = 0, where Al is the area of the triangle (dual to the link l) of the

geometric 4-simplex, and φl its dihedral angle. The areas can be written as derivatives of

the Gram matrix, Al = κ ∂det GIJ

∂φl
, where κ is a proportionality constant, related to the

4-volume of the simplex. For more details see the appendix.

The original group integration in (2.6) is over 5 copies of the 3-sphere S3 ∼ Spin(4)/

SU(2) and the 10 angles φl are easily related to the 5 original 4d unit vectors N̂I ∈ S3, via

cos φIJ = N̂I · N̂J .

For later use, let us consider the equilateral case when all the dihedral angles are equal,

φl = ϕ. Then the constraint simply reads

det GIJ(φl = ϕ) = (1 − cos ϕ)4 (1 + 4 cos ϕ), (2.9)

whose roots are given by the completely degenerate 4-simplex ϕ = 0, and the equilateral

4-simplex ϕ ≡ θ = arccos(−1/4).

To summarise, two important features emerge from the above discussion:

• The relevant group for 4d Riemannian quantum gravity without matter is SU(2).

• The angles φ parametrising SU(2) group elements can be thought of as dihedral angles

between the tetrahedra dual to the nodes of the boundary spin network entering the

spinfoam amplitude.

Equipped with these considerations, we now proceed to describe how to construct the

2-point function.
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Figure 1: The 4-simplex (or pentahedral) boundary spin network. We label the nodes I = 1, . . . 5.

In the dual picture, they are in correspondence with tetrahedra of the boundary triangulation.

Two of them are represented. The links IJ , on the other hand, are dual to triangles. Consider for

instance the link 45: this is dual to the triangle shared by the tetrahedra 4 and 5. Associated with

the link 45 is the dihedral angle φ45 between the tetrahedra 4 and 5.

3. The 2-point function

In the conventional quantum field theory framework one expands the metric tensor around

a given background, typically the Minkowski flat spacetime ηµν , writing gµν = ηµν +`Phµν ;

then the 2-point function,

Wµνρσ(x, y) = 〈0|T {hµν(x)hρσ(y)} |0〉, (3.1)

is evaluated in perturbation theory. The leading order, coming from the quadratic term in

the action, goes as 1/|x − y|2, namely as 1/p2 in momentum space. The higher orders in

the action give self–energy corrections.

In the spinfoam formalism, the 2-point function (3.1) can be studied looking at the

correlations between fluctuations of geometrical quantities. The fluctuations are defined

with respect to a boundary metric which is encoded in a spin network state s. The points

x and y in (3.1) can be identified with nodes of s, and the directions µ can be defined using

the links of s. In particular, since each link of s can be thought of as dual to a triangle in a

triangulation of the boundary, it is convenient to project (3.1) along the normals to these

triangles. Namely, using the boundary metric, we contract the indices of (3.1) with four

normal vectors, two belonging to the (3d region dual to) the node x and two to the node y.

For each node, we should distinguish the case when we take twice the same normal, from

the case when we consider two different normals. In the first case, the contraction with

hµν gives (the fluctuation of) the area of the triangle. In the second case, of the dihedral

angle between the two triangles.

In the quantum theory, both areas and dihedral angles are represented by quantum

operators. The area operator has spectrum given by twice the square root of the SU(2)

Casimir operator,1 A = 2C(j) = 2j + 1. Analogously, the angle operator can be expressed

1The factor 2 between the triangle area and the Casimir can be understood as follows. Given the two

edge vectors aI , bJ of the triangle, the Spin(4) Casimir can be identified with the norm of the bivector

BIJ = 1
2
(aIbJ − bIaJ ), namely with the quantity 1

2
|a|2|b|2 sin2 θ ≡ 2A2. Therefore 2A2 = C2

Spin(4)(j, j) ≡

8 C2(j), using the homomorphism between Spin(4) and SU(2) introduced above. As for the spectrum, let

us recall that the Casimir operator is always defined up to an additive constant. Usually one takes this

constant to zero, so that its spectrum reads C2(j) = j(j + 1). On the other hand, here we take a shift of

1/4, so that C2(j) = (j + 1
2
)2, to match the results on the asymptotics of the {10j} symbol reported below.
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in terms of SU(2) Casimir operators, via the recoupling theorem (see for instance [5, 9]).

This is how the spin variables entering the amplitudes are related to geometrical quantities.

Since the fundamental variables of the theory are triangle areas and dihedral angles, we

compute the 2-point function as the correlation between fluctuations of these quantities

around a flat background. Choosing a flat background for the boundary geometry allows

us to introduce a (spin) scale parameter, which we call j0. We do so by describing the

triangulation of the flat boundary in terms of equilateral triangles with areas A0 = 2C(j0).

The parameter j0 can be used to measure the physical distance between two points on the

boundary with respect to the flat background metric.

In the following, we consider only the correlation between the areas, leaving a discus-

sion of the other cases for the conclusive section. Introducing the normal vectors nµ
a and

nµ
b to the triangles a and b, the area correlations can be compared with the projections

nµ
anν

an
ρ
bn

σ
b Wµνρσ(x, y) of the continuum 2-point function. Notice that if the 4-simplex is

equilateral, there are only three independent projections [5]; these correspond to the three

cases when the triangles a and b are the same, when they share a side, or when the share

only a point. Following [1], the area correlations are given by

Wab(j0) =
1

j4
0

1

N
∑

s

Ψ0[s] �(ja) �(jb) A[s], (3.2)

where N =
∑

s Ψ0[s] A[s] is the normalisation, and the factor 1/j4
0 comes from normalising

the projections along the normals.

Let us briefly explain this formula, referring to [5] for a more complete description.

The graviton propagator is expressed as a sum over all possible boundary spin networks.

This includes a sum over all the the graphs and a sum over all possible assignments of spins

to the links of the graphs.

The boundary state Ψ0[s] should represent a coherent semiclassical state of the bound-

ary geometry [5]. In particular, we require that the relative uncertainties of the geometry

on this state vanish in the large j0 limit, namely

〈Ψ0|∆jl|Ψ0〉
〈Ψ0|jl|Ψ0〉

7→ 0,
〈Ψ0|∆φl|Ψ0〉
〈Ψ0|φl|Ψ0〉

7→ 0 (3.3)

for all links l in the boundary spin network.

The quantity �(ja) := C2(ja) − C2(j0) represents the field insertion hµν(x) in a

Coulomb–like gauge–fixing [3]. We see that it is (one fourth) the fluctuation of the squared

area.

The amplitude A[s] is given by the spinfoam model chosen, and it is a sum over all

spinfoams σ whose boundary ∂σ is given by the spin network s. Working with the Barrett-

Crane model, we have

A[s] =
∑

σ
∂σ=s

∑

jf

∏

f

d2
jf

∏

e∈σ\∂σ

Ae(jf )
∏

e∈∂σ

(Ae(jf ))
1
2

∏

v

{10j}, (3.4)

where v, f are respectively the vertices and faces of the spinfoam, and jf ≡ jl whenever

a face f intersects the boundary forming a link l. The vertex amplitude is given by the

– 6 –
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{10j} symbol introduced in the previous section. Notice that we left unspecified the edge

amplitude Ae(jf ). This reflects the normalisation ambiguity of the {10j} symbol, and

different choices lead to different versions of the BC model2. However we expect changes

in the edge amplitudes not to affect the leading order of the graviton correlations Wab, in

analogy with the 3d case [4]. They will nevertheless affect the higher order corrections,

allowing to distinguish and discriminate the different choices of Ae. Below we will choose

a particular edge amplitude which simplifies the calculations of the leading order.

The expression (3.2) is the full graviton propagator. This can be evaluated in pertur-

bation theory. The parameter of the conventional perturbative expansion is the Planck

length `P. By dimensional analysis, it appears (squared) in front of j0. We are then led

to consider the limit `P 7→ 0, j 7→ ∞ such that `2
Pj is constant, to study the semiclassical

behavior of the 2-point function. This idea is supported by the asymptotic behavior of the

{10j} symbol for large spins, which we recall here.

In the homogeneous large spin limit, namely when jl = Nkl and N 7→ ∞, the integral

(2.6) defining the {10j} symbol can be evaluated with a saddle point approximation, leading

to the asymptotics [11, 12]

{10j} ∼
∑

τ

P (τ) cos
(
SR[jl] + κτ

π

4

)
+ D(jl). (3.5)

Here SR[jl] =
∑

l djl
θl is the Regge action associated with the 4-simplex, dual to the foam

vertex, with triangle areas Al = djl
; P (τ) and κτ are factors depending on the combi-

natorial structure of the 4-simplex, and D(jl) is a contribution coming from degenerate

configurations of the 4-simplex. In principle, the emergence of the Regge action supports

the idea that the large j limit can be used to study the semiclassical properties of the the-

ory. However, the degenerate term D(jl) dominates strongly the asymptotics, thus hiding

the physically interesting first term of (3.5). Indeed, the numerical analysis in [13] could

not confirm (3.5). This fact has raised doubts over the BC model. Nevertheless, it was

suggested in [1] that the sick term D(jl) is in fact negligible in the computation of (3.2),

because it does not match the boundary data induced by Ψ0[jl]. Before showing how this

happens, let us discuss the structure of the perturbative expansion.

Using the approximation (3.5) in (3.2), we compute the 2-point function within a

particular Regge path integral formulation of quantum gravity. The measure for this path

integral is induced by the spinfoam formalism. On the other hand, the Regge action is a

discretised version of GR, and it can be expanded around the flat background, as in the

continuum. The quadratic term in the action is responsible for the behavior of the leading

order of the 2-point function. Higher order terms in the action give corrections in powers

of `P. However, because (3.5) is only an approximation, we expect to have higher order

2 In the literature, the edge (or tetrahedron) amplitude Ae(j1, j2, j3, j4) is usually the product of some

particular powers of dj1dj2dj3dj4 and dj1j2j3j4 , where the latter is the dimension of the intertwiner space

and is given by the norm of the Barrett-Crane intertwiner:

dj1j2j3j4 =

Z

SU(2)

dg
4

Y

i=1

χji
(g).

– 7 –
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corrections to the 2-point function which are not described by Regge calculus. Indeed,

this expectation is confirmed in 3d [4], where an interesting structure of the corrections

emerges.

This is not the end of the story. For any s in (3.2), the amplitude (3.4) sums over all

spin foams interpolating s. Using as in [1] the group field theory generated BC model, each

foam is weighted by a factor λV , where V is the total number of vertices in σ, and λ is the

dimensionless coupling constant of the group field theory. Assuming that the perturbative

expansion in λ is well defined, this suggests that from the group field theory point of view,

the dominant contributions come from the simplest foams. Indeed, at first order in λ we

have a single contribution to (3.2) (see [5]), whose boundary is the 4-simplex spin network.

Understanding the precise interplay between the `P expansion and the λ expansion is

beyond the scope of this paper. In the rest of this paper, we focus on this single contribution.

See the conclusions for more comments.

The Gaussian boundary state and the leading order of the perturbative expan-

sion

Let us recall here the contribution to the 2-point function coming from a single 4-simplex,

as computed in [1]. When we restrict the boundary s to be only the pentahedral spin

network, (3.2) reduces to

Wab(j0) =
1

j4
0

1

N
∑

jl

A[jl] Ψ0[jl] �(ja) �(jb). (3.6)

To explicitly define A[jl], we need to make a choice for the edge amplitudes Ae. The

amplitude A[jl] will then involve the face factors d2
j and the square-root of the boundary

edge amplitudes (Ae)
1/2. We choose Ae(jf ) = (

∏
f djf

)−1. Taking into account the five

tetrahedra of the boundary of the 4-simplex, we have
∏

e∈∂σ

√
Ae(jf ) =

∏
f

∏
e d

−1/2
jf

≡
∏

f d−1
jf

and thus:

A[jl] =
∏

l

d2
jl

∏

l

1

djl

{10j} =
∏

l

djl
{10j} =

∫ ∏

n

dgn

∏

l

χjl
(g−1

s(l)gt(l)). (3.7)

To compute the free propagator, namely the leading order in the large j0 expansion

of (3.2), it is sufficient to consider a Gaussian state (see discussion in [5]) peaking the

(discrete variables representing the) boundary geometry (encoded in the spin network labels

jl) around a given semiclassical configuration. Choosing the equilateral configuration as

the background geometry of the boundary 4-simplex, the data encoded by Ψ0[jl] are the

value 2j0 of the area of the ten triangles, representing the intrinsic curvature, and the

value θ = arccos(−1
4) of the ten dihedral angles, representing the extrinsic curvature. In

particular in [1], the following ansatz was taken:

Ψ0[jl] = exp

{
− 1

2j0

∑

ll′

αll′ δjl δjl′ + iθ
∑

l

(2jl + 1)

}
, (3.8)

– 8 –
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where δjl = jl − j0, and αll′ is a �-valued (non diagonal) matrix that can be fixed by

comparing the leading order of (3.2) with (a suitable discretisation of) the conventional

free propagator [1]. Using (3.8), we have 〈∆jl〉
〈jl〉 = 1√

j0αll
and 〈∆φl〉

〈φl〉 = 1
θ

√
αll

j0
, so that (3.3)

is satisfied in the j0 7→ ∞ limit.

It was assumed that the phase of (3.8) suppresses the term D(jl). Then, using (3.5)

and (3.8), in [1] it was showed that the leading order of (3.6), in the large spin limit, is

W ∼ 1

j0
. (3.9)

This shows that the leading order of the components of the 2-point function behave as

expected: rescaling the boundary geometry where the two points lie, Wab scales as 1/|x−y|2.
However this evaluation relies on a number of assumptions. In particular the use of

(3.5), and the suppression of the degenerate configurations term D(jl). It would thus be

important to confirm the analytic result (3.9) with numerical simulations of (3.6), but this

has not been achieved so far [14], due to the high complexity of the sum. In the rest

of this paper we address this issue, and we prove (3.9) in a way that has been verified

numerically [14]. In particular, we do not use (3.5), and we prove that the degenerate

configurations plaguing the BC model are indeed suppressed. First of all, notice that using

the integral representation (3.7) of the spinfoam amplitude, and swapping the integrals

with the sums, we can rewrite (3.6) as

Wab =
1

j4
0

1

N

∫ ∏

n

dgn

∑

jl

∏

l

χjl
(g−1

s(l)
gt(l)) Ψ0[jl] �(ja) �(jb). (3.10)

The key idea is to use a boundary state Ψ0[jl], so that we can perform exactly the

sums in (5.1). To do so, recall that the kernel is nothing but the SU(2) character. Then,

to be able to perform the sum, it is sufficient to have a state Ψ0[jl] with a well–defined

Fourier transform. This is what we do in the next section.

4. The new boundary state

As we showed above the relevant group for 4d Riemannian GR without matter is simply

SU(2); indeed, (3.2) uses only SU(2) spins. This has interesting consequences, as SU(2)

is also the relevant group for 3d Riemannian GR. Therefore we can apply to the Barrett–

Crane model in 4d the same techniques developed to study the graviton propagator in

the Ponzano–Regge model for 3d quantum gravity in [4]. In particular, we consider the

following new ansatz for the boundary state,

Ψ0(jl) =
∏

l

ψ0(jl), (4.1)

ψ0(j) =
I|j−j0|(

j0
α ) − Ij+j0+1(

j0
α )

√
I0(

2j0
α ) − I2j0+1(

2j0
α )

cos(djθ). (4.2)
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Here the In(z) are the modified Bessel functions of the first kind, and α ∈ �+ is a free

parameter.3

Notice that this new boundary state factorises in link contributions and is real, differ-

ently from (3.8). As shown in [4], the j0 7→ ∞ limit of (4.2) behaves as a Gaussian peaked

around j0,

ψ0(j) ' 4

√
α

j0π
exp{− α

2j0
(j − j0)

2} cos(djθ), (4.3)

and thus (4.1) satisfies the semiclassical requirements (3.3). Thanks to the asymptotic

behavior (4.3), a boundary state constructed from (4.2) can be used to reproduce the

leading order (3.9) using the same procedure outlined in the previous section.

However, the exact form (4.2) opens the way to a new treatment, which allows us give

a check of the procedure of [1]. The key property of (4.2) which we need in the following

is its Fourier transform (see [4]),

ψ̃0(g) =
∑

j

ψ0(j)χj(g) =
∑

η=±

e−
2j0
α

sin2(φ−ηθ)

2N sin φ
sin

(
dj0(φ − ηθ)

)
. (4.4)

where

N = e−
j0
α

√
I0(

2j0

α
) − I2j0+1(

2j0

α
) (4.5)

is the normalisation with respect to the Haar measure. From the Gaussian shape of (4.4),

it is clear that this new boundary state peaks the SU(2) class angle φ around the values ηθ

modulus π. For later purpose, we introduce a sign variable σ = ± and write the peaks as

φ = ηθ +
1 − σ

2
π. (4.6)

As we show below, the different values of the signs η and σ give the same contribution to

the 2-point function, thus summing over them simply adds a trivial redundancy.

The fact that (4.2) admits a simple Fourier transform is at the heart of our construction

of the 2-point function as an integral over SU(2). In particular, in the following we also

need the convolution product between ψ0 and the field insertion � , ψ0 ◦ � . This can be

easily evaluated, using

∇2 =
1

sin2 φ
∂φ sin2 φ∂φ, ∇2χj(φ) = −4 j(j + 1)χj(φ), (4.7)

to write

(ψ0 ◦ �)(φ) =
∑

j

χj(φ)Ψ0(j)
[
C2(j) − C2(j0)

]

=

[
−1

4
∇2 − j0(j0 + 1)

]
ψ̃0(φ)

3With respect to [4], there is an important difference in the phase, which is given by djθ here and by

djθ/2 in the 3d case. The reason for this lies in the asymptotics (3.5), which reproduce the Regge action

with areas A = dj , whereas the asymptotics for the 3d spinfoam amplitude reproduce the Regge action

with lengths ` = dj/2.
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=
∑

η=±

j0

α

e−
2j0
α

sin2(φ−ηθ)

2N sinφ
sin

(
dj0(φ − ηθ)

)
sin 2(φ − ηθ)

×
[

cot 2(φ − ηθ) − j0

α
sin 2(φ − ηθ) + dj0 cot

(
dj0(φ − ηθ)

)]
.

For later use, let us rewrite this expression as

(ψ0 ◦ �)(φ) =
∑

ε=±

∑

η=±

j0

α

e−
2j0
α

sin2(φ−ηθ)

2N sinφ
ε eiεdj0

(φ−ηθ) sin 2(φ − ηθ)

×
[
cot 2(φ − ηθ) − j0

α
sin 2(φ − ηθ) + dj0 i ε

]
. (4.8)

Before proceeding, let us add a few remarks on the new boundary state, which make

it particularly appealing.

• The spin and the angle entering the state, which represent a discretised version of

the conjugate intrinsic and extrinsic curvature variables, are conjugate variables in a

precise mathematical sense: they are conjugate with respect to the SU(2) harmonic

analysis.

• The state is a real quantity. This is due to the fact that the phase is given by a

cosine, and not a single exponent, as in (3.8). The fact that using the cosine and

not just a single exponent does not spoil the leading order of (3.2) was proved in [4].

Furthermore, one could also consider a sine term, or equivalently an SU(2) character.

In 3d, this can be related to particle insertions [4, 16].

• The boundary state has an interacting structure between the variables and the back-

ground; it reduces to a Gaussian only in the limit j0 7→ ∞. For this reason it will also

contribute to the corrections to the free propagator. In particular, the 3d analysis of

this state shows that its contribution interestingly reduces the magnitude of the next

to leading order.

• The boundary state (4.1) is factorised into contributions from single links of the

boundary spin network. This makes its analysis much simpler than (3.8), but also

means that it is straightforward to extend it to arbitrary triangulations.

• In the definition (4.1) we took the same α for all links. Nothing prevents us from

considering arbitrary configurations with a different parameter for each link. Because

this parameter is in a sense related to the knowledge of the boundary geometry, taking

the same value for all links amounts to a homogeneous description of the boundary

state.

5. The 2-point function as an integral over SU(2)

Thanks to the factorisation of the new boundary state, we can rewrite (3.10) as

Wab =
1

j4
0

1

N

∫ ∏

n

dgn

∏

l

Il(gl), (5.1)
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where gl = g−1
s(l)gt(l), and

Il(g) =





∑
jl

χjl
(g)ψ0[jl] ≡ ψ̃0(g), if l 6= a, b,

∑
jl

χjl
(gl)ψ0[jl] �(jl) ≡ (ψ0 ◦ �)(g) if l = a, b,

are given respectively by (4.4) and (4.8). This expression gives the graviton propagator as

an integral over SU(2).

The choice of the adge amplitude Ae(jf ) = (
∏

f djf
)−1 made above simplifies the

computation of the two Fourier transforms. More generically, if Ae(jf ) does not couple the

spins and is simply a power of
∏

f djf
, Wab still factorises as above, with the extra powers

of djl
acting as differential operators ∂θ in computing the Fourier transform. On the other

hand, if the edge amplitude couples the spins and introduces some dj1j2j3j4 factors (see

footnote 2), the situation is different. For a single 4-simplex, these factors can always be

compensated by introducing suitable counter–factors in the boundary state, and thus the

form (5.1) can be restored. For multi–simplices configurations, this will not work. However,

for arbitrary triangulations it is not straightforward to obtain the integral representation

(5.1) of the graviton, even with the simplest choice Ae(jf ) = (
∏

f djf
)−1. In fact, the

one–to–one correspondence between SU(2) characters and factors (4.2) of the boundary

state is in general lost. This makes it harder to perform the sums explicitly. We postpone

the study of arbitrary triangulations to future work, nonetheless let us notice here that

the correspondence is preserved by any n-valent vertex, as long as the vertex amplitude

is provided by the relativistic spin network (2.5). Therefore, an integral expression like

(5.1) can be obtained for any triangulation that can be coarse grained to a single n-valent

vertex.

To explicitly evaluate the perturbative expansion in j0, it is convenient to use the

measure (2.8) in terms of the ten angles. Notice that the factors sin φl in (2.8) simplify

with the ones coming from ψ̃0(g) and (ψ0 ◦ �)(g), and we can write (5.1) as

Wab =
1

j4
0

1

N
∑

εl=±

∑

ηl=±

∫ ∏

l

dφl δ
(

det GIJ

)

×
∏

l

εl e
iεl dj0

(φl−ηlθ) �(φa) �(φb) e−
2j0
α

P

l sin2(φl−ηlθ), (5.2)

where we have absorbed the constant (2N)10 in the normalisation, and we have introduced

the notation

�(φa) =
j0

α
sin 2(φa − ηaθ)

[
cot 2(φa − ηaθ) − j0

α
sin 2(φa − ηaθ) + dj0 i εa

]
. (5.3)

The expression (5.2) is the contribution to the graviton propagator coming from a single

4-simplex.

Let us stress that (5.2) is an integral over SU(2) with no sums involved, as opposed to

(3.6). This result is particularly important from a numerical point of view. The integral

is in fact much easier to handle numerically than the sums, and the formulation provided
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here gives substantial progress in the numerical simulations [14]. As far as the sum over the

η signs are concerned, we show below that each configuration gives the same contribution,

so that the sum gives a trivial redundancy that can be reabsorbed in the normalisation.

To define the perturbative expansion in `P we can use the parameter j0 as above.

Notice that j0 enters the exponential of the integrand. Therefore the leading order in the

j0 7→ ∞ limit can be computed using the saddle point approximation of the integral. We

do so in the next section.

6. The saddle point approximation

The study of the leading order and corrections to the 2-point function formulated as a group

integral requires the analysis of the saddle point (or stationary phase) approximation of

the following type of integral:
∫

dµ[φl] F (φl)
∑

ηl=±
ei

P

l εldj0
(φl−ηlθ) e−

2j0
α

P

l sin2(φl−ηlθ),

where εl = ± are signs, F (φl) an arbitrary function (with no dependence on j0) and the

measure dµ(φl) is defined in (2.8). For large j0 that integral is dominated at the fixed

points of the action

S[φl, κ] =
∑

l

[
2

α
sin2(φl − ηlθ)− 2iεl(φl − ηlθ)

]
− i

κ

j0
detGIJ , (6.1)

where we used a Lagrange multiplier κ to introduce the constraint det GIJ = 0. To compute

the equations of motion, notice that ∂ det GIJ

∂φl
= −2 sin φl Λ

(l), where Λ(l) is the determinant

of the off–diagonal l-th minor of GIJ , obtained removing the line and column corresponding

to one of the two cos φl appearing in it.

Then the equations of motion read:




2
α sin 2(φl − ηlθ) − 2iεl = −2i κ

j0
sin φl Λ

(l) ∀l,

detGIJ = 0.

(6.2)

The only real solution to this set of equations is:

φl = ηlθ +
1 − σl

2
π, εl = ε ηl (6.3)

where ε = ± is a global sign (independent of the link l), and it requires the symmetry

property σl = σIJ = σIσJ , with σI and σJ independent signs. We have sin φl = ηlσl sin θ

and Λ(l)(φl) = σl Λ0, Λ0 := cos θ (1 − cos θ)3. Consequently, the Lagrange multiplier takes

the value

κ = ε
j0

sin θ Λ0
. (6.4)

The action evaluated on the fixed point (6.3) is purely real and vanishes, S[φl, κ] = 0. If

εl 6= εl, there is no real solution. The saddle point approximation selects two specific terms

out of the sum over all possible sign assignments.
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More generally, the first part of the action, S0[φ, κ] = −∑
l 2iεlφl − i κ

j0
detGIJ , is

the standard action governing the asymptotics of the (equilateral) {10j} symbol. It has

two non–degenerate fixed points φl = θ and φl = −θ, but also degenerate fixed points at

φl = 0, π. These degenerate fixed points dominate the asymptotic behavior of the {10j}
symbol [11 – 13], and are responsible for the D term in (3.5). However, we see that their

contribution to the 2-point function is suppressed: in (5.2), there is an additional Gaussian

weight, which is maximized by φl = θ but not by φ = 0, π. Therefore it kills the degen-

erate configurations and peaks the asymptotics around the non–degenerate semiclassical

configuration. This provides the mechanism to neglect the D term, as done in [1].

We have not shown that there is no complex solution to these equations although we

believe there is none.4 In particular, there could be fixed points close or along the imaginary

line φl − ηlθ ∈ iR, for which the Gaussian would blow up. Such points can be easily found

if det GIJ 6= 0 is allowed, but otherwise we have not been able to find any. The results of

our partial analysis suggest that the constraint detGIJ = 0 protects the integral from the

presence of exponentially enhanced fixed points, a mechanism that could be relevant also

for the asymptotics of the {10j} symbol alone.

Before proceeding, let us add an important remark.5 After the identification of the

fixed points, one usually computes the integral along the complex contour such that the

phase (namely the imaginary part of S) varies the least. This steepest descent method

is implemented imposing that the imaginary part of the second derivative of S vanishes.

However, in the following we will use the real contour, which does not satisfy this require-

ment (as can be immediately seen from the explicit expression of the second derivatives in

(6.2)). Nevertheless, as we mention at the end of this section, a numerical check has been

performed independently from our analysis and the fit is (at least) of two decimals. This

means that most likely there are no other (relevant) fixed points and that the real contour

is enough for the study of the correlations.

The fact that complex fixed points, if they do exist, are not relevant for our analysis

may be due to the following reasons. First, notice that we are summing over all signs ηl,

in such a way that only the real part of the integral matters (see below), a fact that might

lessen the relevance of the phase. Then, recall that the precise normalisation of the integral

is not relevant but only its ratio with N , the integral without the � insertions. Finally, we

are merely computing the first order of the large j0 asymptotics of Wab. The existence of

complex fixed points might become relevant when computing the higher order corrections.

We leave this question open for future investigations.

Based on this preliminary analysis of the stationary points, we are now ready to state

the main result of this paper on the asymptotics of the 4-simplex 2-point function.

Theorem 1. The leading order of the large j0 expansion of (5.2) is

Wab(j0) =
fab(α, θ)

j0
, (6.5)

where fab has only three independent entries.

4At least, it is fairly straightforward to check that there is no purely imaginary solutions φl ∈ iR.
5We thank our referee for pointing this out.

– 14 –



J
H
E
P
1
1
(
2
0
0
6
)
0
9
2

These correspond to the three independent projections of the graviton propagator along

couples of normals belonging to the same triangles (see discussion in section 3), and should

not be confused with the physical independent components. The explicit structure of

fab(α), reported in the proof below, is rather complicate, reflecting the complicate geomet-

rical structure of a 4-simplex, even in the equilateral case.

Proof. The proof goes as follows.

1. We rewrite (5.2) introducing a Lagrange multiplier κ for the constraint det GIJ ,

Wab =
1

j4
0

1

N
∑

ηl=±

∑

εl=±

∫
dκ

∫ ∏

l

dφl

(
∏

l

εl

)
e−j0S[φl,κ]+i

P

l εl(φl−ηlθ) �(φa) �(φb),

(6.6)

where S[φl, κ] is given by (6.1). The normalisation N is given by the same quantity

above without the insertions �(φa) �(φb) and without the constant factor j−4
0 . In the

calculations below, we will use N to reabsorb a number of overall constants, without

affecting the final result.

The expansion parameter j0 enters the exponent in front of the action S, and the

field insertions �. The saddle point of the action is

φl = φl, εl = εl, κ = κ, (6.7)

where φl and εl are given in (6.3), and κ in (6.4).

2. To compute the leading order of (6.6), we expand the action to second order around

the saddle point (where both the zeroth and the linear orders vanish), and evaluate

the rest at lowest order. In particular, at the saddle point we have

∏

l

εl

∣∣∣
saddle

=
∏

l

ε ηl ≡
∏

l

ηl, ei
P

l εl(φl−ηlθ)
∣∣∣
saddle

=
∏

l

eiε ηl
1−σl

2
π =

∏

l

σl. (6.8)

Consequently, we obtain the global sign
∏

l ηl σl. When we perform the sum over the

ηl signs in (6.6), we obtain identically zero unless we have the matching ηl = σ σl ∀l,

where σ is an irrelevant overall sign. In the following, we take σl = ηl.

The leading order of (6.6) is thus

Wab ' 1

j4
0

1

N
∑

ηl=±

∑

ε=±

∫
dδκ

∫ ∏

l

dδφl e
− j0

2

(
∂2S

∂φl∂φ
l′

δφlδφl′+
∂2S

∂φl∂κ
δφlδκ

)

�(φa + δφa)

×�(φb + δφb). (6.9)

3. In principle, the value of the field insertions at the saddle point is enough for the

leading order. However, we have �(φ) ≡ 0, thus we need to expand the field insertions.

This can be done in two steps. First, we keep only the terms in j2
0 in (5.3), thus

�(φa) ' (
j0

α
)2 sin 2(φa − ηaθ)

[
2α i εa − sin 2(φa − ηaθ)

]
. (6.10)
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Then, we expand φ = φ + δφ. We have sin
(
(1 − σa)π + 2δφa

)
= sin 2δφa ' 2 δφa.

Using also εa = ε ηa, we can write

�(φa + δφa) ' (
j0

α
)2 2 δφa

[
2α i ε ηa − 2 δφa

]
. (6.11)

However, these two terms are of different orders. In fact, notice that (6.9) is a

Gaussian integral with width proportional to 1/
√

j0. Therefore δφ2 ∼ 1/j0, so the

second term in (6.11) can be neglected, and finally

�(φa + δφa) ' 4α i (
j0

α
)2 ε ηa δφa. (6.12)

4. The second derivatives of the action have the following form,

∂2S

∂φl∂φl′

∣∣∣
saddle

= ηl ηl′ A
ε
ll′ ,

∂2S

∂φl∂κ

∣∣∣
saddle

=
2i

j0
ηl sin θ Λ0. (6.13)

The explicit form of Aε
ll′ is given in the appendix, and it satisfies A−

ll′ = A+
ll′ .

Notice that the constant factor sin θ Λ0 can be neglected rescaling the definition of

δκ, and then reabsorbing it in the normalisation N of (6.9).

5. The leading order of (6.6) is thus the following Gaussian integral,

Wab = − 1

N
16

α2

∑

ηl=±

∑

ε=±
ηa ηb

∫
dδκ

∫ ∏

l

dδφl δφa δφb

× exp

[
−ηlηl′

j0

2
Aε

ll′δφlδφl′ − iηlδφlδκ

]
=

= −16

α2

1

Z(0)

∂2

∂Ja∂Jb
Z(J)

∣∣∣
J=0

, (6.14)

where we have introduced the generating functional

Z(J) =
∑

ηl=±

∑

ε=±

∫
dδκ

∫ ∏

l

dδφl exp

[
−ηlηl′

j0

2
Aε

ll′δφlδφl′ − iηlδφl

(
δκ + iJl

)]
.

(6.15)

6. The generating functional is a Gaussian integral that can be evaluated straightfor-

wardly. To maintain the explicit symmetry of the problem, we perform first the

integral over the ten angles, obtaining

Z(J) =
∑

ηl=±

∑

ε=±

(2π)5

j5
0

√
detAε

ll′

∫
dδκ exp

[
− 1

2j0

∑

ll′

(δκ + iJl)(Aε
−1)ll′(δκ + iJl′)

]
.

(6.16)

Here we used the fact that det
(
ηl ηl′ A

ε
ll′

)
≡ detAε

ll′ . Observe that consequently the

sums over the ηl signs give a trivial redundancy 210. The remaining integral is also

straightforward, and we finally obtain

Z(J) = 210
∑

ε=±

(2π)5
√

2πj0

j5
0

√
detAε

ll′
∑

ll′(Aε
−1)ll′
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× exp




1

2j0




∑

ll′

(Aε
−1)ll′JlJl′ −

( ∑
ll′(Aε

−1)ll′Jl

)2

∑
ll′(Aε

−1)ll′





 . (6.17)

Because A−
ll′ = A+

ll′ , the sum over the ε sign amounts to taking (twice) the real part
of the summand. Reabsorbing the irrelevant constants in the normalisation Z(0) and
defining All′ = A+

ll′ , we can then write

Z(J)=Re





1√
detAll′

∑
ll′

(A−1)ll′

exp




1

2j0



∑

ll′

(A−1)ll′JlJl′ −

( ∑
ll′

(A−1)ll′Jl

)2

∑
ll′

(A−1)ll′











.

(6.18)

7. As shown in the appendix, the matrix (A−1)ll′ satisfies
∑

l′(A
−1)ll′ = f1(α) ∀l, where

f1(α) =
√

15

2( 2
√

15
α

+5i)
, and thus

∑
ll′(A

−1)ll′ = 10f1(α).

Using this, we can finally write

Wab = − 1

N
16

α2 j0
Re

{
A−1

ab − 1
10f1(α)√

detA 10f1(α)

}
, N = Re

{
1√

detA 10f1(α)

}
.

(6.19)

8. The theorem is proved with

fab(α) = −16

α2

Re

{
A−1

ab
− 1

10
f1(α)√

det A f1(α)

}

Re

{
1√

det A f1(α)

} (6.20)

If seen as a matrix, fab(α) has only three independent components, as it is shown in

the appendix. Geometrically, these are related to the three cases (i) when a and b are the

same triangle, (ii) when they share a side (they are “adjacent” in the 4-simplex), or (iii)

when they share only one point (they are “opposite” in the 4-simplex).

For instance, choosing the value α = 1/2, we have

Wadj(j0) '
1.21

j0
, Wopp(j0) ' −0.61

j0
. (6.21)

Remarkably, these values can be confirmed by a numerical analysis of (6.6) [14].

7. Conclusions and outlook

We have introduced a new boundary state to construct the graviton propagator. This new

boundary state is given in (4.1), and in the large spin limit it reduces to the same Gaussian

considered in [1]. Using the new state we were able to write the (contribution from a

single 4-simplex to the) graviton propagator as an integral over SU(2). This is explicitly
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given in (5.2). The result is very useful from the point of view of numerical analysis

(see [14]), which is significantly simplified with respect to the expression of [1]. Also, the

integral expression of the graviton allows to recast the `P expansion into the saddle point

expansion of the integral. Here we evaluated the leading order, given in (6.5). The reason

why the degenerate configurations of the Barrett–Crane model can be neglected emerges

clearly: they correspond to non absolute minima of the action. As such, they do not enter

the perturbative expansion.

These results provide a starting point for further developments. Let us mention a few

which we regard as particularly interesting:

• Compute the next to leading order correction. This is a formidable task, but the

integral expression here obtained allows a precise setting to do it. One has to consider

higher orders in the expansion of the action (6.1) around the saddle point, as well

as higher orders in the expansion of the field insertions. Furthermore, we expect

different choices of edge amplitudes to affect the next to leading order (as it happens

in 3d [4]), and thus computing it should allow to discriminate between the different

versions of the Barrett–Crane model: different choices of coupling between the 4-

simplices will lead to different higher orders. From this point of view, the fact that

the expression can also be studied numerically provides a crucial support.

• Compute the angle correlations. This permits to reconstruct the whole tensorial

structure of (3.1), and check the number of physical degrees of freedom. Up to

now, we have looked at correlations between the spins j associated to two triangles

of the 4-simplex. These area correlations correspond to components of the type

Waabb(x, y). To access the remaining components, we need to look at observables

involving four different triangles of the 4-simplex. This corresponds to correlations

between dihedral angles, i.e. between two intertwiners within the 4-simplex. Looking

at such correlations was also suggested in [17] in order to study the possibility of

long–range correlations in BC–like spinfoam models.

• The boundary state has a parameter, α, in some sense related to the knowledge of

the boundary geometry. Can we consider also the angle θ as an external parameter,

to be related to the choice of triangulation? This is an interesting question that can

be addressed looking at what happens if we choose an angle θ̃ 6= θ = arccos(−1/4) in

the boundary state (4.1). The phase of the boundary state would not match anymore

the oscillating term of the {10j} symbol and the saddle point approximation would

fail. This means that the single 4-simplex would not give the leading order of the

correlation anymore: a different spacetime triangulation is needed to obtain the 1/j0

behaviour. For example, for an angle θ̃ = nθ we can imagine a configuration with

n 4-simplices to dominate over the single 4-simplex configuration, and possibly give

the 1/j0 behaviour. Notice that the new triangulation giving the leading order would

depend on the group field theory coupling constant λ and the choice of coupling

between 4-simplices (edge amplitude). More work on many 4-simplices configurations,
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following the original analysis of [5], is needed in order to understand these situations

and possibly highlight the precise physical role of λ.

• Consider the Lorentzian case. Now the relevant group is the non-compact Lorentz

group SO(3, 1) ∼ SL(2, �). We expect the procedure proposed in this paper to extend

directly, once the harmonic analysis for the Lorentz group is used. In particular, the

Gaussian exp(− sin2 φ) for SU(2) used in the boundary state should be replaced by the

analogous exp(− sinh2 φ) for SL(2, �), or maybe by the simpler Gaussian exp(−φ2).

The latter case could further simplify the analysis of the group integrals.
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A. Geometry of a 4-simplex

Where more convenient, we use the double index notation for the links: l ≡ IJ , where I

and J are the two nodes linked by l.

Let us consider five 4d unit vectors N̂I ∈ S3, I = 1 . . . 5, and introduce the ten angles

defined by their scalar products, cos φIJ = N̂I · N̂J , with the convention φII = 0. Finally,

we define the 5 × 5 Gram matrix, GIJ = cos φIJ . These five vectors are not linearly

independent, so we can find vI ∈ R
5 such that:

5∑

I=1

vI N̂I = 0. (A.1)

This means that the 5-vector vI is a null vector for the Gram matrix GIJ . In particular,

we get a constraint on the angles φIJ :

∀J,
∑

I

vI N̂I · N̂J = 0 ⇒ det GIJ = 0. (A.2)

This constraint can be interpreted geometrically as follows. The five unit vectors

define a unique geometric 4-simplex (embedded in R
4) up to a global scale (4-volume of

the simplex). They are the (outward) normals to the five tetrahedra of the 4-simplex. The

closure condition of the 4-simplex reads exactly as (A.1) with the vI being the (oriented)

3-volumes of the tetrahedra. Furthermore, we can differentiate the equation (A.2) and

contract it with the null vector. This gives:

∑

I,J

vI vJ sinφIJ dφIJ = 0. (A.3)

Next, recall the well known relation 3 vI vJ sin φIJ = 4V AIJ , where V is the 4-volume of

the simplex and AIJ the area of the triangle shared by the two tetrahedra I and J . This
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relation allows to write (A.3) in a simple geometric form as
∑

I 6=J

AIJ dφIJ = 0, (A.4)

which is the Schläfli identity.

On the other hand, directly differentiating the detGIJ = 0 constraint gives:
∑

I<J

sinφIJ Λ(IJ) dφIJ = 0, (A.5)

where Λ(IJ) is the off–diagonal minor obtained by removing the Ith line and Jth column

from the Gram matrix GIJ . In particular, this means that the minors Λ(IJ) are related to

the areas AIJ , up a global scale factor κ:

Λ(IJ) = κ
AIJ

sin φIJ
. (A.6)

This relation was used in section II.

The minors Λ(IJ) ≡ Λ(l) play a major role in evaluating the components of the graviton

propagator. In fact, their derivatives enter the second derivatives of the action (6.1). Using

sin φl = ηlσl sin θ and Λ(l)(φl) = σl Λ0, Λ0 := cos θ (1− cos θ)3, at the saddle point (6.7) we

have

∂2S

∂φl ∂φl′

∣∣∣
saddle

=
4

α
cos 2(φl−ηlθ) δll′ +2i

κ

j0

(
cos φl Λ

(l) δll′ +sinφl
∂Λ(l)

∂φl′

)∣∣∣
saddle

≡ ηl ηl′ A
ε
ll′ ,

(A.7)

where

Aε
ll′ :=

(
4

α
+ 2iε cot θ

)
δll′ + 2iε

1

Λ0

∂Λ(l)

∂φl′

∣∣∣
φ=θ

, (A.8)

and
∂2S

∂φl ∂κ

∣∣∣
saddle

= 2i
1

j0
sin φl Λ

(l)
∣∣∣
saddle

= 2i
1

j0
ηl sin θ Λ0. (A.9)

Notice that A−
ll′ ≡ A+

ll′ .

Evaluated at the saddle points, the derivatives of the minors have the following values,

∂Λ(l)

∂φl′

∣∣∣
saddle

= σl ηl
∂Λ(l)

∂φl′

∣∣∣
φ=θ

=





−σl ηl Λ0
2 cos2 θ+3cos θ+1

sin θ cos θ if l = l′,

σl ηl Λ0
1+cos θ

sin θ if l and l′ adjacient,

0 if l and l′ opposite.

(A.10)

Using these and the explicit value θ = arccos(−1
4 ) of the angle, (A.8) reads

Aε
ll′ =

6√
15

(2
√

15

3α
− i

3
ε
)
δll′ +

6√
15

iε





2 if l = l′,

1 if l and l′ adjacient,

0 if l and l′ opposite.

(A.11)

– 20 –



J
H
E
P
1
1
(
2
0
0
6
)
0
9
2

The matrix All′ := A+
ll′ has only three independent entries, coming from the three inde-

pendent components of the matrix ∂Λ(l)

∂φl′
. Consequently, each row of the matrix and of its

inverse shows the same structure, which is summarised in the table below. For convenience,

we have introduced the quantity α′ = 2
√

15
3α .

matrix All′ inverse matrix (A−1)ll′

6√
15

(
α′ + i5

3

)
along the diagonal

√
15
2

(3α′+2i)(3α′+11i)
(3α′+20i)(−7i+3α′)(3α′+5i)

6√
15

i occuring six times −i 3
√

15
2

(3α′+11i)
(3α′+20i)(−7i+3α′)(3α′+5i)

0 occuring three times i 3
√

15(3α′+11i)
(3α′+20i)(−7i+3α′)(3α′+5i)

Finally, we have

detAll′ =
1024

759375
(3α′ + 5i)(3α′ + 20i)4(−7i + 3α′)5, (A.12)

and

f1(α) :=
∑

l′

(A−1)ll′ ≡
√

15

2(2
√

15
α + 5i)

∀l, (A.13)

from which
∑

ll′(A
−1)ll′ = 10f1(α).
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